

Unità di missione per il Piano nazionale di ripresa e resilienza

Informazioni avviso/decreto

Titolo avviso/decreto

Campus didattici per il potenziamento di laboratori innovativi connessi a Industria 4.0 - Scuole statali

Codice avviso/decreto

M4C1I3.2-2025-1444

Descrizione avviso/decreto

Il progetto relativo alla realizzazione di campus didattici per il potenziamento di laboratori innovativi connessi a Industria 4.0, in attuazione dell'articolo 2 del D.M. 25 ottobre 2024, n. 215, si inserisce all'interno dell'investimento 3.2 "Scuola 4.0: scuole innovative, cablaggio, nuovi ambienti di apprendimento e laboratori" nell'ambito della Missione 4 - Componente 1 - del Piano nazionale di ripresa e resilienza. Scopo dell'intervento è il potenziamento dei laboratori professionalizzanti esistenti e la realizzazione di nuovi laboratori, particolarmente rivolti alle classi partecipanti al piano nazionale di sperimentazione relativo all'istituzione della filiera formativa tecnologico-professionale, in coerenza con quanto previsto dal decreto del Ministro dell'istruzione e del merito n. 240 del 7 dicembre 2023 e dal comma 2, dell'articolo 25-bis, del decreto-legge 23 settembre 2022, n. 144, convertito, con modificazioni, dalla legge 17 novembre 2022, n. 175, così come introdotto dall'articolo 261 della legge 8 agosto 2024, n. 121 "Istituzione della filiera formativa tecnologico-professionale". I laboratori dovranno essere configurati sulla base di un modello di "campus didattico", ovvero un insieme organico di ambienti e strumenti di apprendimento, interconnessi e pluridisciplinari, dove gli studenti possono sperimentare sul campo compiti e attività specifiche di ciascun indirizzo professionale, secondo una prospettiva di scambio orizzontale fra sapere e saper fare nell'istruzione secondaria e di orientamento verticale verso la formazione professionale terziaria. I laboratori del campus didattico devono ispirarsi al modello di "Industria 4.0", che integra le tecnologie digitali abilitanti (Intelligenza Artificiale, Robotica, Internet delle cose, Cloud computing, etc.) in tutti i processi produttivi, mettendo in connessione fra loro tutti gli strumenti digitali di apprendimento attivi negli istituti tecnici e professionali, e realizzando, pertanto, un campus di ambienti laboratoriali integrato e intercomunicante.

Linea di investimento

M4C1I3.2 - Scuole 4.0: scuole innovative e laboratori

Dati del proponente

Denominazione scuola/ITS

I.I.S. "A. VOLTA" FROSINONE

Città

FROSINONE

Codice meccanografico scuola/Codice ITS

FRIS01800E

Provincia

FROSINONE

Legale Rappresentante

Nome

MARIA ROSARIA

Codice fiscale

VLLMRS63S43F839W

Cognome

VILLANI

Email

mariar.villani@libero.it

Referente del progetto

Nome Cognome
ANNA MARIA VERSACI

Codice Fiscale

VRSNMR72C66H501W

EmailTelefonoannamaria.versaci@libero.it3926207687

Informazioni progetto

Codice CUP

F44D24002860006

Codice progetto

M4C1I3.2-2025-1444-P-57387

Titolo progetto

Industria 4+0 nella sperimetazione 4+2 Meccanica Meccatronica dell'IIS VOLTA di Frosinone

Descrizione progetto

Il progetto "Industria 4+0 nella sperimentazione 4+2 Meccanica Meccatronica" del nostro Istituto prevede un potenziamento e il rinnovamento di laboratori del settore meccanico/meccatronico per rendere l'offerta formativa del nostro Istituto, in particolare quella della sperimentazione quadriennale indirizzo meccanico/meccatronico, innovativa e connessa all'Industria 4.0, per la formazione nell'ambito delle professioni digitali del futuro. La creazione di nuovi ambienti didattico educativi e nuovi laboratori si integra bene nella nostra visione pedagogica che ha già visto, con l'adozione del metodo DADA, porre gli ambienti di apprendimento al centro dell'azione didattica. Si prevede di intervenire con sistemi e tecnologie avanzate sui seguenti laboratori, attualmente inadeguati alle sfide del mercato del lavoro e dell'Industria 4.0, con le quali andranno a rapportarsi i nostri studenti in uscita dalla scuola: LAB S301 Macchine utensili - LAB S110 Laboratorio di Fisica - LAB S109 Laboratorio di Informatica. Tutti i laboratori si ispireranno al modello di "Industria 4.0", che integra le tecnologie digitali abilitanti (Intelligenza Artificiale, Robotica, Internet delle cose, Cloud computing, etc.) in tutti i processi produttivi.

Data inizio progetto prevista

03/06/2025

Data fine progetto prevista

31/03/2026

Dettaglio intervento: Campus didattico con laboratori innovativi

Intervento:

M4C1I3.2-2024-1444-1604 - Campus didattico con laboratori innovativi

Descrizione:

Scopo dell'intervento è il potenziamento dei laboratori professionalizzanti esistenti e la realizzazione di nuovi laboratori, particolarmente rivolti alle classi partecipanti al piano nazionale di sperimentazione relativo all'istituzione della filiera formativa tecnologico-professionale, in coerenza con quanto previsto dal decreto del Ministro dell'istruzione e del merito n. 240 del 7 dicembre 2023 e dal comma 2, dell'articolo 25-bis, del decreto-legge 23 settembre 2022, n. 144, convertito, con modificazioni, dalla legge 17 novembre 2022, n. 175, così come introdotto dall'articolo 261 della legge 8 agosto 2024, n. 121 "Istituzione della filiera formativa tecnologico-professionale". I laboratori dovranno essere configurati sulla base di un modello di "campus didattico", ovvero un insieme organico di ambienti e strumenti di apprendimento, interconnessi e pluridisciplinari, dove gli studenti possono sperimentare sul campo compiti e attività specifiche di ciascun indirizzo professionale, secondo una prospettiva di scambio orizzontale fra sapere e saper fare nell'istruzione secondaria e di orientamento verticale verso la formazione professionale terziaria. I laboratori del campus didattico devono ispirarsi al modello di "Industria 4.0", che integra le tecnologie digitali abilitanti (Intelligenza Artificiale, Robotica, Internet delle cose, Cloud computing, etc.) in tutti i processi produttivi, mettendo in connessione fra loro tutti gli strumenti digitali di apprendimento attivi negli istituti tecnici e professionali, e realizzando,

pertanto, un campus di ambienti laboratoriali integrato e intercomunicante.

Progetto Campus didattici

Mappatura della situazione iniziale dei laboratori esistenti ad uso dell'indirizzo/degli indirizzi interessati dalla sperimentazione in filiera

Il progetto coinvolge prevalentemente l'indirizzo di meccanica e meccatronica in particolare le classi del quadriennale. Si intende rinnovare il laboratorio di macchine utensili, il LAB S301, oggi dotato di macchine utensili tradizionali, che, sebbene fondamentale per l'insegnamento delle tecniche di lavorazione di base, richiede un potenziamento in chiave automatizzata. È necessario introdurre robotica collaborativa e sensori intelligenti per migliorare la produttività e ridurre gli errori. La digitalizzazione dei flussi produttivi tramite software di monitoraggio e gestione consentirà di integrare questi macchinari nel contesto di Industria 4.0, ottimizzando la gestione e la precisione delle operazioni. Altro laboratorio da rinnovare e funzionale alla meccanica e meccatronica è il Lab S109, attualmente un laboratorio di informatica standard, da sostituire con una nuova dotazione che ne consenta l'utilizzo per la progettazione in modellazione solida assistita e gestita dall'IA. Un ulteriore laboratorio funzionale al potenziamento dell'offerta formativa nel settore meccanico e meccatronico, ma anche di tutti gli altri indirizzi di studio, è quello di fisica che andrebbe rivoluzionato con l'introduzione di sistemi di acquisizione dati digitali, sensori didattici, e software di analisi avanzati. Gli esperimenti tradizionali verranno riprogettati per esplorare i principi fisici (meccanica, termodinamica, elettricità e ottica) attraverso la lente delle tecnologie 4.0, facendo familiarizzare gli studenti con l'analisi dei dati in tempo reale e le basi del controllo automatico. L'attuale dotazione del laboratorio è prettamente analogica e quindi anacronistica rispetto alle esigenze dell'Industria 4.0. In generale si vogliono riprogettare gli Spazi Laboratoriali (dal singolo laboratorio al "Campus") per creare aree tematiche interdisciplinari integrando i laboratori già esistenti ed avanzati con guelli rinnovati grazie al presente progetto. Si creeranno aree tematiche interdisciplinari ("aree campus") che raggrupperanno laboratori affini, come un'area "Automazione e Robotica" che integrerà meccanica, elettronica e informatica. I laboratori saranno modulari e flessibili, con arredi e attrezzature riconfigurabili. Saranno presenti spazi di collaborazione e co-working dotati di tecnologie per il lavoro di gruppo. Si allestiranno zone di "Ricerca e Sviluppo" per progetti applicativi e "Showroom" tecnologici per esporre i lavori degli studenti.

Strategia che sarà adottata per l'allestimento del "campus didattico" finalizzato a rafforzare la filiera formativa tecnologico-professionale, con particolare riferimento alle modalità operative adottate per garantire che il campus si configuri come un insieme organico di ambienti e strumenti di apprendimento, interconnessi e pluridisciplinari, dove gli studenti possano sperimentare sul campo compiti e attività specifiche di ciascun indirizzo professionale, secondo una prospettiva di scambio orizzontale fra sapere e saper fare nell'istruzione secondaria e di orientamento verticale verso la formazione professionale terziaria.

L'obiettivo del "campus didattico" è creare un ambiente di apprendimento dinamico e innovativo, dove la teoria si fonda con la pratica, e dove gli studenti possano sviluppare competenze trasversali e specifiche, preparandoli al meglio per il mondo del lavoro o per l'istruzione terziaria. Obiettivi principali: interconnessione e pluridisciplinarietà; superare la frammentazione dei saperi, creando connessioni tra i diversi indirizzi e discipline; Apprendimento Basato sull'Esperienza (Learning by Doing); porre l'enfasi sulla sperimentazione pratica e sulla risoluzione di problemi reali; orientamento verticale e orizzontale per garantire un flusso coerente tra i diversi livelli di istruzione (secondaria e terziaria) e tra i diversi ambiti professionali; flessibilità e adattabilità; progettazione di spazi e percorsi che possano evolvere con le esigenze del mercato del lavoro e le innovazioni tecnologiche; collaborazione e condivisione per favorire la collaborazione tra studenti, docenti, aziende e istituzioni. Per il LAB S301, separato dall'ambiente del LAB S301 bis, si prevede un allestimento con macchine tradizionali integrate con macchine CNC a controllo numerico che integrino sistemi di monitoraggio remoto e analisi predittiva tramite IoT. Il fulcro del Campus sarà la Didattica per Progetti (Project-Based Learning - PBL), con progetti interdisciplinari che simulano situazioni lavorative reali. Si proporranno "compiti di realtà" e sfide inter-indirizzo che richiedono collaborazione. Le attività di Alternanza Scuola-Lavoro (PCTO) saranno integrate nel campus con progetti aziendali reali. Si creeranno percorsi di orientamento strutturati verso la formazione terziaria (ITS, Università) e il mondo del lavoro. Si stabiliranno accordi di "filiera corta" con ITS e Università per favorire il passaggio degli studenti. Orientamento Verticale e Networking: saranno organizzati "Speed Date" con le aziende e una rete di Ex-Alunni per favorire il contatto e le opportunità. Un esempio pratico di questa strategia è il "Progetto Smart Factory", dove studenti di diverse discipline (meccanica, elettronica, informatica) collaborano dalla progettazione alla realizzazione, integrazione e monitoraggio di un prototipo, utilizzando le diverse aree e tecnologie del campus. Questo approccio mira a creare un ecosistema di apprendimento dove le competenze sono costruite attivamente attraverso l'esperienza, la collaborazione e un dialogo continuo con il mondo professionale

Elenco dei laboratori connessi con Industria 4.0 che saranno potenziati/realizzati

Denominazione laboratorio	Descrizione laboratorio	Indirizzi scolastici beneficiari	Attrezzature e arredi previsti nel laboratorio	Connessione con Industria 4.0
LAB S301	Il laboratorio prevede attività di saldatura in realtà aumentata e realtà virtuale, attività di tornitura e fresatura anche con CNC, attività di assemblaggio, misure meccaniche di precisione	Meccanica e meccatronica;	Maschera di sicaldatura AR, tower station con schermo, torcia per GMAW, SMAW e GTAW	Sistema di Saldatura in Realtà Aumentata per apprendere tecniche di saldatura in un ambiente sicuro e interattivo introducendo gli studenti ai principi fondamentali della saldatura nell'industria 4.0
LAB S109	Laboratorio informatico capace di supportare attività laboratoriali didattiche avanzate legate all'utilizzo di tecnologie di I.A. con agenti I.A.	Informatica; meccanica e meccatronica	23 PC: 1 postazione premium,4 postazioni high-end,18 postazioni standard;Software tipo Blender 4.0+, Interfaccia AI conversazionale, Python 3.11+, VS Code	Integrazione moduli su Machine Learning, LLM, training e finetuning locale/remoto, sistemi RAG, agenti AI con strumenti tipo N8N o A2A e interfaccia MCP Server
LAB S110	Nel laboratorio gli esperimenti tradizionali, attraverso la tecnologia 4.0 verranno riprogettati per esplorare i principi fisici	Informatica; meccanica e meccatronica quinquennale e quadriennale; elettrotecnica; chimica e materiali;	Kit tipo Arduino, oscilloscopi e multimetri digitali, 20 PC con software CAD; armadi, cassettiere, banchi di lavoro modulari	Laboratorio di fisica 4.0 dove la scienza incontra la tecnologia del futuro;si prevede l'introduzione di sistemi di acquisizione dati digitali, sensori IoT didattici e software di

Denominazion	ne Descrizione laboratorio	Indirizzi scolastici	Attrezzature e arredi	Connessione con Industria
laboratorio		beneficiari	previsti nel laboratorio	4.0
		biotecnologie sanitarie		analisi avanzata

Modalità organizzative adottate per l'efficace progettazione e gestione dell'intervento

La prima fase del progetto ha previsto un' indagine conoscitiva attraverso una serie di riunioni con i responsabili dei diversi laboratori per acquisire la situazione attuale e per progettare opportuni interventi di miglioramento legati agli innovativi moduli formativi previsti nella sperimentazione 4+2 anche in accordo con ITS Academy. Dai risultati dell'indagine è emersa la necessità di innovare i laboratori del settore meccanico meccatronico e quelli funzionali allo stesso settore. Successivamente, considerate le nuove skill richieste dal mercato del lavoro e in particolare le tecnologie richieste dall'industria 4.0, sono state fatte le opportune valutazioni relativamente ai nuovi sistemi ed apparati da implementare nei laboratori individuati. Dai risultati dell'indagine è emersa la necessità di innovare i laboratori del settore meccanico meccatronico e quelli funzionali allo stesso settore. Viene costituito il Team di progetto composto da DS, DSGA, Staff e docenti delle discipline coinvolte, tra quelli con maggiori esperienze nella progettazione. Successivamente, considerate le nuove skill richieste dal mercato del lavoro e in particolare le tecnologie richieste dall'industria 4.0, sono state fatte le opportune valutazioni relativamente ai nuovi sistemi ed apparati da implementare nei laboratori individuati. In caso di approvazione del progetto i docenti del Team cureranno i capitolati tecnici necessari al DS e DSGA per le procedure di gara. Si prevede di avviare le procedure in tempi brevissimi, dopo l'approvazione del progetto, nel rispetto dei tempi previsti dal bando, al fine di dotare quanto prima la scuola e il territorio del Campus didattico. Le innovazioni tecnologiche apportate dal progetto comporteranno una necessaria e opportuna riprogrammazione didattica che coinvolgerà tutti i docenti per un reale miglioramento dell'offerta formativa. Seguirà una formazione specifica su hardware e software rivolta ai docenti ma anche agli assistenti tecnici di laboratorio di informatica, elettrotecnica e meccanica/meccatronica. Per la gestione del Campus si terranno riunioni periodiche di dipartimento per valutare l'efficacia di quanto realizzato e programmare eventuali interventi correttivi o migliorativi. Il Campus sarà sede di convegni, seminari, incontri rivolti alle scuole del territorio e agli studenti della fondazione ITS Meccatronico del Lazio Academy e dell'Università di Cassino e del Lazio Meridionale, sede di Frosinone

Indicatori

Numero stimato di studenti che utilizzano servizi, prodotti e processi digitali pubblici nuovi e aggiornati all'interno dei laboratori del campus

Codice	Descrizione	Tipo indicatore	Unità di misura	Valore programmato
C7	UTENTI DI SERVIZI, PRODOTTI E PROCESSI DIGITALI PUBBLICI NUOVI E AGGIORNATI	C - COMUNE	Utenti per anno	600

Target

Target da raggiungere e rendicontare da parte del soggetto attuatore entro il trimestre e l'anno di scadenza indicato

Nome Target	Unità di misura	Valore target	Trimestre di scadenza	Anno di scadenza
Le classi si trasformano in ambienti di apprendimento innovativi grazie alla Scuola 4.0	Numero	2 - Avviso	T4	2025

Piano finanziario

Voce	Percentuale minima	Percentuale massima	Percentuale fissa	Importo
Spese per dotazioni e attrezzature digitali e arredi tecnici innovativi per i laboratori 4.0 connessi con Industria 4.0 e del campus didattico	70%			183.620,68 €
Eventuali spese per piccoli interventi di carattere edilizio strettamente funzionali all'intervento		20%		51.724,13 €
Spese di progettazione e tecnico-operative (compresi i costi di collaudo e le spese per gli obblighi di pubblicità)		10%		23.275,87 €
IMPORTO TOTALE RICHIESTO PER IL PROGETTO				

Dati sull'inoltro

Dichiarazioni

- DICHIARAZIONE TITOLARE EFFETTIVO Il/la sottoscritto/a, in qualità di legale rappresentante, consapevole delle conseguenze penali di dichiarazioni mendaci, falsità in atti o uso di atti falsi, ai sensi dell'art. 76 D.P.R. 445/2000, dichiara, sotto la propria responsabilità, di essere titolare effettivo dell'ente soggetto attuatore del progetto, secondo i dati sopra indicati.
- DICHIARAZIONE ASSENZA CONFLITTO INTERESSI T.E. II/la sottoscritto/a, consapevole delle conseguenze penali di dichiarazioni mendaci, falsità in atti o uso di atti falsi, ai sensi dell'art. 76 D.P.R. 445/2000, per quanto gli è dato sapere alla data della presente dichiarazione, in qualità di legale rappresentante e titolare effettivo dell'ente soggetto attuatore del progetto, secondo i dati sopra indicati, dichiara sotto la propria responsabilità, che non sussistono situazioni, anche potenziali, di conflitto di interesse tra il sottoscritto/a e i soggetti dell'Amministrazione titolare indicati nell'Avviso indicato in intestazione. Il/la sottoscritto/a si impegna, altresì, a comunicare tempestivamente, entro la data di chiusura della procedura selettiva, l'eventuale variazione del contenuto della presente dichiarazione e a rendere, nel caso, una nuova dichiarazione sostitutiva.
- DICHIARAZIONE ASSENZA DOPPIO FINANZIAMENTO Il/la sottoscritto/a, consapevole delle sanzioni penali stabilite dall'articolo 76 del D.P.R. 445/2000 per false attestazioni e dichiarazioni mendaci e del divieto di duplicazione dei finanziamenti, così come definito dall'art. 9 del Reg. (UE) 2021/241, dagli Accordi di Finanziamento ITA/CE e dalle Note/Circolari/Linee Guida in materia adottate dalla Commissione europea e dalla Ragioneria Generale dello Stato Ispettorato Generale per il PNRR, in qualità di legale rappresentante e titolare effettivo dell'ente soggetto attuatore del progetto, secondo i dati sopra indicati, dichiara sotto la propria responsabilità, che i costi del progetto proposto saranno coperti esclusivamente da fonte RRF e che soltanto tali costi concorreranno al raggiungimento della performance oggetto della Misura PNRR nel cui ambito si collocherà la progettualità proposta.

Data

03/07/2025

IL LEGALE RAPPRESENTANTE

Firma digitale del Legale rappresentante.